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Non-Markovian Quantum Kinetics and Conservation
Laws
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A link between memory effects in quantum kinetic equations and nonequilibrium
correlations associated with the energy conservation is investigated. In order
that the energy be conserved by an approximate collision integral, the one-par-
ticle distribution function and the mean interaction energy are treated as inde-
pendent nonequilibrium state parameters. The density operator method is used
to derive a kinetic equation in second-order non-Markovian Born approxima-
tion and an evolution equation for the nonequilibrium quasi-temperature which
is thermodynamically conjugated to the mean interaction energy. The kinetic
equation contains a correlation contribution which exactly cancels the collision
term in thermal equilibrium and ensures the energy conservation in non-
equilibrium states. Explicit expressions for the entropy production in the non-
Markovian regime and the time-dependent correlation energy are obtained.

KEY WORDS: Nonequilibrium statistical mechanics; quantum kinetic theory;
non-Markovian kinetic equations; nonequilibrium correlations.

1. INTRODUCTION

Experimental studies of fast relaxation processes caused by the interaction
of short laser pulses with matter(1, 2) have inspired a renewed interest in
non-Markovian kinetics. Although this subject has been under development
for many years, recent investigations have shown that the inclusion of
memory effects in collision integrals leads to some serious problems, which
did not receive proper attention previously.
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Since in many cases of experimental interest the system can be described
in terms of weakly interacting quasiparticles, the most-used non-Markovian
quantum kinetic equations are in fact modifications of the so-called Levinson
equation(3) in which the collision integral is taken in second-order Born
approximation and the energy-conserving delta function is replaced by an
oscillating memory kernel (see, e.g., ref. 2). It should be noted, however,
that such kinetic equations have some grave disadvantages. (i) The Levinson-
like kinetic equations have unstable solutions and even produce negative
distribution functions. (ii) If the initial state of the system is already ther-
mal equilibrium, the collision integrals do not vanish, giving rise to non-
physical time evolution. The first defect can be overcome by using certain
decaying memory kernels(2, 4, 5) which take account of the quasiparticle
damping. However, in such approaches, the problem of the equilibrium
solution still persists because all ``improved'' memory kernels lead to colli-
sion integrals which do not conserve the total energy of the system. As a
consequence, in the long-time (Boltzmann) limit the ``improved'' non-
Markovian quantum kinetic equations do not describe the relaxation to
thermal equilibrium, leading to an overpopulation of high-energy states.

To summarize, it appears that the quasiparticle damping alone cannot
be responsible for the long-time asymptotic behavior of non-Markovian
quantum kinetic equations; there must be another physical mechanism
which provides the exact cancellation of collision effects in thermal equi-
librium and does not violate the energy conservation. The origin of such a
mechanism can be deduced from consideration of kinetic processes in the
presence of initial correlations. As early as 1970 Lee et al.(6) studied the
evolution of a weakly interacting low-density classical gas with a correlated
initial state and showed that in equilibrium the changes in the one-particle
distribution function due to collisions (including memory effects) and
initial correlations exactly cancel each other. Recently the same result was
obtained for quantum systems.(7) It therefore would appear reasonable that
the interplay between collisions and nonequilibrium correlations would be
the mechanism which provides the correct long-time behavior of non-
Markovian quantum kinetic equations.

This paper presents an approach in which the time evolution of the
one-particle distribution function is coupled with the evolution of long-
lived correlations associated with conservation laws. The basic idea is to
treat conserved quantities, most notably the energy, as independent state
parameters in addition to the one-particle distribution function. Although
this is not to say that all many-particle correlations can be incorporated
in this way, the advantage of the above idea, originally suggested in the
context of a generalization of the Enskog theory to dense classical gases
with ``soft'' inter-particle potentials(8, 9) and then applied to quantum
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systems, (10, 11) lies in the fact that now, due to microscopic equations of
motion, the energy is an exactly conserved quantity in any approximation
for the collision integral. Moreover, the energy conservation leads to the
appearance of additional correlation terms in the kinetic equation, which
substantially compensate the collision contribution. In this paper, within
second-order non-Markovian Born approximation, we derive a collision
integral involving the collision and correlation terms. It is shown that the
kinetic equation is consistent with the energy conservation and has the
correct equilibrium solution.

The paper is organized as follows. In Section 2 we consider a general-
ized Gibbs ensemble in which the energy and the one-particle distribution
function play the role of given nonequilibrium state parameters. The
corresponding relevant statistical operator is used to define the thermo-
dynamic quantities: nonequilibrium entropy, the quasi-temperature, and
the quasi-chemical potential. We also derive the evolution equations for the
thermodynamic quantities in terms of the collision integral. Section 3 is
concerned with construction of the nonequilibrium statistical operator
describing non-Markovian kinetic processes in a spatially homogeneous
system. The nonequilibrium statistical operator is found in terms of the
relevant statistical operator for quantum systems with a weak interaction
by employing iterative solution of the von Neumann equation. In Section 4
the nonequilibrium statistical operator is used to calculate the non-
Markovian collision integral. In Section 5 we derive the entropy produc-
tion in the non-Markovian regime and an expression for the time-depen-
dent correlation energy of the system. Section 6 sketches a generalization
of the theory to spatially non-homogeneous systems. Finally, Section 7
contains the final conclusions and comments on further applications of the
theory.

2. NONEQUILIBRIUM CORRELATIONS ASSOCIATED WITH
CONSERVATION LAWS

To put our discussion into a straightforward language, we shall con-
sider a system of fermions or bosons with the Hamiltonian H� =H� 0+H� $,
where H� 0 is the kinetic energy operator and the term H� $ describes a
pairwise interaction between particles. In second quantized form, these
operators are given by

H� 0=:
1

=11$a-
1a1$ , H� $= 1

2 :
121$2$

(1$2$| V |12) a-
2$ a

-
1$a1a2 (2.1)

where the label k denotes a complete set of single-particle quantum
numbers, =11$ is a hermitian single-particle energy matrix, ak and a-

k are
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Fermi or Bose annihilation and creation operators. Generally speaking, the
Hamiltonian can also contain additional terms describing interaction of the
system with external fields. For simplicity, we will not consider this interac-
tion explicitly and restrict ourselves to relaxation processes in the system
just after the initial excitation by the external field. However, the theory
can easily be generalized to the case where the field effects are taken into
consideration (see Section 7 for a discussion).

In what follows the system is assumed to be spatially homogeneous,
which is adequate for most experimental situations where memory effects
are of crucial importance.(2) Some aspects of the following analysis may
also be of interest for transport processes in nonhomogeneous systems, so
that we shall return to this point in Section 6. In the spatially homogeneous
case, it is convenient to take (k)=(pk , _k), where p is the momentum and
_ is the spin index. Then the kinetic energy operator in Eq. (2.1) becomes

H� 0=:
1

=1 a-
1a1 (2.2)

where =1==p are single-particle energies.
Within the kinetic description of the system, the main objective is to

derive a kinetic equation for the one-particle distribution function

f1(t)=(a-
1a1) t#( f� 1) t, (2.3)

where the symbol ( } } } ) t stands for the average calculated with some non-
equilibrium statistical operator *(t). Formally, the kinetic equation follows
immediately from the von Neumann equation for the statistical operator

�*(t)
�t

+
1
i�

[*(t), H� ]=0 (2.4)

Taking the product of this equation with f� 1 and then calculating the trace,
we get

�f1(t)
�t

=I1(t) (2.5)

where

I1(t)=
1
i�

([ f� 1 , H� $]) t=
1
i�

Tr[[ f� 1 , H� $] *(t)] (2.6)

is the collision integral. In order that Eq. (2.5) be a closed kinetic equation,
the collision integral must be expressed in terms of the one-particle
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distribution function��which is equivalent to requiring that the statistical
operator *(t) is represented as a functional of the one-particle distribution
function. A common technique for obtaining such a representation is based
on the condition of complete weakening of initial correlations for the quan-
tum BBGKY hierarchy in combination with some truncation procedure.
A limitation of this standard scheme is the very strong assumption that the
one-particle distribution function is the only nonequilibrium state variable
describing the system. However, there exist long-lived correlations which
cannot be expressed exactly in terms of the one-particle distribution func-
tion. For example, many-particle correlations arise due to formation of
bound states. Another origin of long-lived correlations lies in local conser-
vation laws. The conservation of energy is of special importance because
the density of the interaction energy is determined by the two-particle dis-
tribution function. Thus, strictly speaking, kinetic processes must always be
considered together with the evolution of locally conserved quantities, i.e.,
with hydrodynamic processes. A consistent description of kinetics and
hydrodynamics can be developed by treating the one-particle distribution
function (for quantum systems, the Wigner function) and the energy den-
sity as independent state parameters, which means that the statistical
operator *(t) is represented as a functional of the corresponding dynamical
variables (see, e.g., refs. 11�13 and references therein). Here we will follow
this approach to study non-Markovian kinetic processes in a spatially
homogeneous system. In this case the correlation effects arise due to the
fact that the total energy is an integral of motion. Modifications of the
theory needed for the spatially non-homogeneous case will be discussed in
Section 6.

2.1. The Relevant Statistical Operator

We begin by considering the statistical thermodynamics description of
nonequilibrium states with correlations caused by conservation laws. For a
one-component spatially homogeneous system, the conserved quantities of
interest are the total number of particles, N, the total momentum, P, and
the total energy, E. They can be expressed as the mean values of the
dynamical variables N� =�1 f� 1 , P� =�1 p1 f� 1 , and H� , i.e.,

N=(N� ) t=:
1

f1(t), P=(P� ) t=:
1

p1 f1(t), E=(H� ) t (2.7)

For simplicity, we shall assume the total momentum to be zero. Then the
only integrals of motion that must be considered are the energy and the
number of particles.
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To see how the statistical thermodynamics description of nonequilibrium
correlations can be developed, we recall the well-known grand canonical
statistical operator

*eq=exp[&;(H� &+N� )]�Tr exp[&;(H� &+N� )] (2.8)

where the equilibrium inverse temperature, ;=1�T, and the chemical
potential, +, are related to N and E by the equations of state

N=Tr[N� *eq], E=Tr[H� *eq] (2.9)

The grand canonical operator (2.8) describes the equilibrium Gibbs ensemble
and is a stationary solution of the von Neumann equation (2.4). Suppose
now that we want to construct a statistical operator which describes a
generalized Gibbs ensemble characterized by a nonequilibrium one-particle
distribution function f1(t) and by given values of the conserved quantities.
This is a special case of a more general situation where the state of the
system is described by a set of parameters Pm(t) which can be represented
as the mean values, Pm(t)=Tr[P� m*(t)], of some dynamical variables P� m .
As argued by Jaynes, (14) the corresponding relevant statistical operator can
be derived by maximizing the entropy functional for given Pm(t). The
extremum condition for the entropy gives(12)

*rel(t)=exp {&:
m

*m(t) P� m=<Tr exp {&:
m

*m(t) P� m= (2.10)

The Lagrange multipliers *m(t) are to be expressed in terms of the Pn(t)
from the self-consistency conditions

Pm(t)=Tr[P� m*rel(t)] (2.11)

which can also be interpreted as nonequilibrium equations of state. Follow-
ing the above line of reasoning, it is easy to derive the relevant statistical
operator which describes the generalized Gibbs ensemble with given values
of the total energy, the total number of particles, and the one-particle dis-
tribution function. We write it in the form

*rel(t)=
1

Zrel(t)
exp {&;*(t)(H� &+*(t) N� )&:

1

*1(t) f� 1= (2.12)

where the partition function is determined by the normalization condition,

Zrel(t)=Tr exp {&;*(t)(H� &+*(t) N� )&:
1

*1(t) f� 1= (2.13)
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and the Lagrange multipliers ;*(t), +*(t), and *1(t) are to be calculated
from the self-consistency conditions (nonequilibrium equations of state)

f1(t)=Tr[ f� 1*rel(t)], N=Tr[N� *rel(t)], E=Tr[H� *rel(t)] (2.14)

Note that the grand canonical operator (2.8) is a special case of the relevant
statistical operator (2.12), where the state parameters are integrals of motion.

2.2. Alternative Representations for the Relevant Statistical
Operator

By analogy with Eq. (2.8), the quantities T*(t)=1�;*(t) and +*(t)
may be called the quasi-temperature and the quasi-chemical potential, respec-
tively. Here one comment is in order. The important difference between the
state parameters N and E is that the former is a linear combination of the
one-particle distribution functions, f1(t), whereas E involves the mean
interaction energy

Eint(t)=(H� $) t (2.15)

which, in general, cannot be expressed in terms of f1(t) only. Thus, in fact,
the set of independent state parameters consists of f1(t) and Eint(t). This
also is seen from Eq. (2.12) where the terms coming from the kinetic energy
operator and the particle number operator can be combined with the last
term by introducing new Lagrange multipliers 41(t) through the relation

41(t)=;*(t)[=1&+*(t)]+*1(t) (2.16)

Then Eq. (2.12) reduces to

*rel(t)=
1

Zrel(t)
exp {&;*(t) H� $&:

1

41(t) f� 1= (2.17)

with the partition function given by

Zrel(t)=Tr exp {&;*(t) H� $&:
1

41(t) f� 1= (2.18)

The self-consistency conditions for the Lagrange multipliers ;*(t) and
41(t) can now be taken in the form

f1(t)=Tr[ f� 1*rel(t)], Eint(t)=Tr[H� $*rel(t)] (2.19)
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since the mean kinetic energy is exactly expressed in terms of the one-
particle distribution function. Summarizing, the quasi-chemical potential,
+*(t), can, in principle, be excluded from the set of Lagrange parameters
since the second of the conditions (2.14) follows from the first one.
Nevertheless, the expression (2.12) has two advantages. First, it goes over
explicitly to the equilibrium statistical operator, if ;*(t)=1�T, +*(t)=+,
and *1(t)=0. Second, some formulas to be derived in the following have
a more clear physical interpretation when written in terms of the quasi-
chemical potential. For these reasons, we will consider Eq. (2.12) as a repre-
sentation for *rel(t) which is equivalent to Eq. (2.17) by virtue of Eq. (2.16).
Note, however, that Eq. (2.16) determines only *1(t)&;*(t) +*(t), but not
the quasi-chemical potential itself. Since no physical quantity depends on
the special choice of the quasi-chemical potential, the function +*(t) may
be chosen arbitrarily provided that +*(t)=+ in thermal equilibrium. For
our purposes, it will be convenient to define the quasi-chemical potential
through the condition

N=Tr[N� *rel(t)] (2.20)

where *q(t) is the auxiliary quasi-equilibrium statistical operator

*q(t)=exp[&;*(t)(H� &+*(t) N� )]�Tr exp[&;*(t)(H� &+*(t) N� )] (2.21)

which describes the state characterized by the quasi-temperature T*(t)=
1�;*(t) and the total number of particles N. Equation (2.20) ensures that,
in the equilibrium limit, +*(t) goes to the chemical potential + since ;*(t)
goes to the equilibrium inverse temperature.

For completeness, we give one more representation for the relevant
statistical operator, which is obtained from Eq. (2.12) by the formal decom-
position of the Hamiltonian

H� =H� 0(t)+H� $(t) (2.22)

where

H� 0(t)=:
1

E1(t) a-
1a1 , H� $(t)=H� $&:

1

7HF
1 (t) a-

1a1 (2.23)

and the re-normalized single-particle energies,

E1(t)==1+7HF
1 (t) (2.24)

involve the exchange Hartree�Fock term

7HF
1 (t)=:

2

(12| V |12) ex f2(t) (2.25)
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Here and in what follows the subscript ``ex'' indicates the symmetrized
(antisymmetrized) interaction amplitude

(12| V |1$2$) ex=(12| V |1$2$) �(12| V |2$1$)

=(12| V |1$2$) �(21| V |1$2$) (2.26)

with the upper sign for fermions and the lower sign for bosons. Insertion
of Eq. (2.22) into Eqs. (2.12) and (2.13) gives

*rel(t)=
1

Zrel(t)
exp {&;*(t) H� $(t)&:

1

4� 1(t) f� 1 = (2.27)

Zrel(t)=Tr exp {&;*(t) H� $(t)&:
1

4� 1(t) f� 1= (2.28)

The new Lagrange multipliers, 4� 1(t), are related to 41(t) and *1(t) by

4� 1(t)=41(t)+;*(t) 7HF
1 (t)=;*(t)[E1(t)&+*(t)]+*1(t) (2.29)

We emphasize once again that the representations for the relevant statistical
operator given by Eqs. (2.12), (2.17), and (2.27), are equivalent to each other
and differ only in the definition of the Lagrange multipliers conjugated to
the one-particle distribution function.

C. Thermodynamic Relations

It is important to note that the relevant statistical operator allows to
extend thermodynamic relations to nonequilibrium systems (see, e.g.,
ref. 12). The key quantities are the Massieu�Planck function

8(t)=ln Zrel(t)=ln Tr exp {&:
m

*m(t) P� m= (2.30)

and the nonequilibrium entropy

S(t)=&Tr[*rel(t) ln *rel(t)]=8(t)+:
m

*m(t) Pm(t) (2.31)

which play the role of thermodynamic potentials in the variables [*m(t)]
and [Pm(t)], respectively. In the case under consideration, using the above
given representations for the partition function, we obtain formally dif-
ferent but equivalent thermodynamic relations. Taking, for instance, the
partition function in the form (2.13), we see that the Massieu�Planck
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function can be interpreted as a nonequilibrium thermodynamic potential
in the variables ;*(t), +*(t), and *1(t). Calculation of its variation gives

$8(t)=&[E&+*(t) N] $;*(t)+;*(t) N$+*(t)&:
1

f1(t) $*1(t) (2.32)

In the same representation, the entropy (2.31) can be written as

S(t)=8(t)+;*(t)[E&+*(t) N]+:
1

*1(t) f1(t) (2.33)

where the self-consistency conditions (2.14) have been used. Varying both
sides of Eq. (2.33) and recalling Eq. (2.32), we find

$S(t)=;*(t)[$E&+*(t) $N]+:
1

*1(t) $f1(t)

=;*(t) $E+:
1

[*1(t)&;*(t) +*(t)] $f1(t) (2.34)

In the last line we have taken into account that $N=�1 $f1 . The entropy
may thus be considered as a nonequilibrium thermodynamic potential in
the variables E and f1(t) or, what is the same��in the variables Eint(t) and
f1(t). From Eqs. (2.34) it follows that

;*(t)=\�S(t)
�E + f

=\ �S(t)
�Eint(t)+ f

, *1(t)&;*(t) +*(t)=\�S(t)
�f1(t)+E

(2.35)

The second equation confirms the fact that thermodynamics determines
only the combination of the Lagrange multiplier *1(t) and the quasi-chemical
potential.

2.4. Evolution Equations for Thermodynamic Quantities

As already discussed, in the approach presented here the total energy
is regarded as an independent state parameter in addition to the one-particle
function. The evolution equation for the total energy is trivial: dE�dt=0.
We shall see, however, that the correlation contribution to the kinetic
equation is related to the time dependence of other thermodynamic quan-
tities, such as the quasi-temperature and the interaction energy. We will
now show that the evolution equations for the thermodynamic quantities
of interest can be expressed in terms of the collision integral (2.6).
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2.4.1. Energy Balance

We start with equation for the interaction energy, Eq. (2.15). Since the
total energy is conserved and

E=(H� ) t=:
1

=1 f1(t)+Eint(t) (2.36)

we immediately obtain the balance equation

dEint(t)
dt

=&:
1

=1I1(t) (2.37)

In dealing with nonequilibrium many-particle correlations, it is convenient
to introduce the correlation energy, Ecorr(t), which is defined as

Ecorr(t)=Eint(t)&EHF(t)=E&:
1

=1 f1(t)&EHF(t) (2.38)

where

EHF(t)= 1
2 :

12

(12| V |12) ex f1(t) f2(t)= 1
2 :

1

7HF
1 (t) f1(t) (2.39)

is the Hartree�Fock contribution to the total energy. From Eqs. (2.37) and
(2.38) follows the balance equation

dEcorr(t)
dt

=&:
1

E1(t) I1(t) (2.40)

which differs from Eq. (2.37) in that now the single-particle energies are
given by Eq. (2.24), i.e., they involve the exchange Hartree�Fock term.

2.4.2. Equation for the Quasi-Temperature

In principle, the evolution equation for ;*(t) may be derived from the
equation of state, ;*(t)=;*(E, [ f (t)]), where the second argument
indicates that ;* is a functional of f1(t). This way, however, is not appro-
priate because we have to calculate the functional derivative of ;*(t) with
respect to the one-particle distribution function. It is more convenient to
make use of the self-consistency conditions (2.19) by differentiating them
with respect to time. This gives

Tr {�*rel(t)
�t

f� 1==I1(t), Tr {�*rel(t)
�t

H� $==
dEint(t)

dt
(2.41)
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Since the relevant statistical operator, when taken in the form (2.17),
depends on time through the Lagrange multipliers ;*(t) and 41(t), we may
write

�*rel(t)
�t

=
$*rel(t)
$;*(t)

d;*(t)
dt

+:
1

$*rel(t)
$41(t)

�41(t)
�t

(2.42)

With the aid of Eqs. (2.17) and (2.18), the variations of *rel(t) can easily be
calculated and then Eqs. (2.41) are transformed to (for brevity, the argu-
ment t is omitted)

( f� 1 , H� $)
d;*
dt

+:
1$

( f� 1 , f� 1$)
�41$

�t
=&I1 (2.43)

(H� $, H� $)
d;*
dt

+:
1

(H� $, f� 1)
�41

�t
=&

dEint

dt
(2.44)

where we have introduced the correlation function of two dynamical
variables:

(A� , B� )=|
1

0
dx(2A� *x

rel 2B� *&x
rel ) rel (2.45)

with 2A� =A� &(A� ) rel . Equation (2.43) can formally be solved for �41��T
to give

�41

�t
=&:

1$

/&1
11$ {( f� 1$ , H� $)

d;*
dt

+I1$ = (2.46)

where /&1 is inverse to the correlation matrix

/11$=( f� 1 , f� 1$) (2.47)

Substituting the expression (2.46) into Eq. (2.44) and recalling the balance
equation (2.37), we obtain

d;*(t)
dt

=
1
C

:
11$

(H� , f� 1) /&1
11$ I1$ (2.48)

with the following notation:

C=(H� $, H� $)&:
11$

(H� $, f� 1) /&1
11$ ( f� 1$ , H� $) (2.49)
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It is easy to check that C in invariant under transformations H� $ �
H� $+�1 :1 f� 1 with arbitrary coefficients :k . This property allows one, for
instance, to replace H� $ in Eq. (2.49) by the operator H� $(t) [cf. Eqs. (2.23)].

2.4.3. The Entropy Production

We finally derive the entropy balance equation. Recalling Eq. (2.34),
we write

dS(t)
dt

=;*(t)
dE(t)

dt
+:

1

[*1(t)&;*(t) +*(t)]
�f1(t)

�t

The first term on the right-hand side is zero since the total energy is conserved.
Taking also into account that �f1 ��t=I1 and �1 I1=dN�dt=0, we arrive
at the equation

dS(t)
dt

=:
1

*1(t) I1(t) (2.50)

which determines the entropy production in the system. We have already
noted that, in thermal equilibrium, the Lagrange multipliers *1(t) are equal
to zero. In addition, the collision integral is also zero in thermal equi-
librium. Consequently, the entropy production given by Eq. (2.50) is at
least of second order in the deviations from equilibrium, as it should be.

3. THE NONEQUILIBRIUM STATISTICAL OPERATOR

To proceed beyond the formal thermodynamic relations, we have to
calculate the collision integral (2.6). In other words, we have to find a solu-
tion of the von Neumann equation (2.4) for the statistical operator *(t) in
terms of the state parameters. Since Eq. (2.4) is a differential equation with
respect to time, one has to give the statistical operator at some initial time
t0 or require the *(t) to satisfy some boundary condition for t � &�. An
appropriate choice of the initial or boundary condition depends on the
physical situation under consideration. Formally, one may consider the
initial statistical operator *(t0) or the limiting statistical operator in a dis-
tant past to be arbitrary. We will, however, use the initial condition *(t0)=
*rel(t0) at some time t0 and the boundary condition that the true statistical
operator coincides with the relevant statistical operator in a distant past.
The choice of these special conditions, however, is taken only for simplicity
since it is of little consequence for the long-time behavior of the kinetic
equation, which is of interest to us here.
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Assuming that

*(t0)=*rel(t0) (3.1)

and using the decomposition (2.22) of the Hamiltonian, it can easily be
verified that the von Neumann equation (2.4) is equivalent to the integral
equation

*(t)=*rel(t)&|
t

t0

dt$ U0(t, t$) {�*rel(t$)
�t$

+
1
i�

[*rel(t$), H� 0(t$)]= U -
0(t, t$)

&|
t

t0

dt$ U0(t, t$)
1
i�

[*(t$), H� $(t$)] U -
0(t, t$) (3.2)

where

U0(t, t$)=exp+ {&
i
� |

t

t$
H� 0(t") dt"= (3.3)

is the unperturbed evolution operator; the symbol exp+[ } } } ] stands for
the time-ordered exponent. Equation (3.2) is still exact. If H� $(t) is treated
as a small perturbation, an approximate solution of Eq. (3.2) can be found
by an iterative procedure. We shall restrict our discussion to the second-
order non-Markovian Born approximation in the collision integral, which
leads, in the standard approach, (2) to the Levinson kinetic equation.

To calculate the second-order collision integral (2.6), we need the
statistical operator *(t), correct to first order in the perturbation H� $. We
shall show later than the time derivative �*rel(t$)��t$ in Eq. (3.2) is at least
of second order in H� $ and, consequently, can be omitted. We next note
that the interaction term enters explicitly into the relevant statistical
operator [see, e.g., (2.27)]. Therefore the leading interaction contribution
to the commutator [*rel(t$), H� 0(t$)] is at least linear in H� $; this term must
be retained. Finally, since the last term in Eq. (3.2) is already of first order
in the interaction, we may replace *(t$) in this term by *rel(t$). Thus, the
nonequilibrium statistical operator, correct to first order in H� $, is given by

*(t)=*rel(t)&|
t

t0

dt$ U0(t, t$)
1
i�

[*rel(t$), H� 0(t$)] U -
0(t, t$)

&|
t

t0

dt$ U0(t, t$)
1
i�

[*rel(t$), H� $(t$)] U -
0(t, t$) (3.4)

Another solution of the von Neumann equation can be obtained by
imposing the boundary condition that the true nonequilibrium statistical
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operator coincides with the relevant statistical operator in a distant past.
This solution follows easily by adding to Eq. (2.4) an infinitesimally small
source:(12)

�*(t)
�t

+
1
i�

[*(t), H� 0(t)+H� $(t)]=&=[*(t)&*rel(t)] (3.5)

where = � +0 after the calculation of averages with *(t). It is important to
note that the inclusion of the source term into the von Neumann equation
does not violate the energy conservation. This can be seen by taking the
product of Eq. (3.5) with H� and calculating the trace. Then we obtain

dE(t)
dt

=&=[E(t)&Tr(H� *rel(t))] (3.6)

The right-hand side of this equation is zero due to the self-consistency
condition for the total energy in the relevant ensemble.

Analogously to the derivation of Eq. (3.4), we use Eq. (3.5) to derive
the first-order statistical operator in the form

*(t)=*rel(t)&|
t

&�
dt$ e&=(t&t$)U0(t, t$)

1
i�

[*rel(t$), H� 0(t$)] U -
0(t, t$)

&|
t

&�
dt$ e&=(t&t$)U0(t, t$)

1
i�

[*rel(t$), H� $(t$)] U -
0(t, t$) (3.7)

This expression can also be interpreted as a rule for passing to the limit
t0 � &� in Eq. (3.4) since the factor exp[&=(t&t$)] provides the
regularization of the integral.

4. THE NON-MARKOVIAN COLLISION INTEGRAL

We now turn to the calculation of the collision integral (2.6) using the
explicit expression (3.4) for the statistical operator. First we will show that
the term *rel(t) in Eq. (3.4) does not contribute to the collision integral.
Note that the obvious identity ([ f� 1 , ln *rel(t)]) t

rel=0 and Eq. (2.17) give

;*(t)([ f� 1 , H� $]) t
rel+:

1$

41$(t)([ f� 1 , f� 1$]) t
rel=0

Since [ f� 1 , f� 1$]=0, we find that ([ f� 1 , H� $]) t
rel=0. Thus the collision

integral (2.6) is at least of second order in the interaction. This allows us
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to show that the time derivative �*(t$)��t$ in Eq. (3.2) is also of second
order in H� $ and, consequently, it does not contribute to the first-order
expressions (3.4) and (3.7). We use the fact that the relevant statistical
operator depends on time through the state parameters or through the
conjugated Lagrange multipliers. For instance, we may assume that *rel(t$)
=*rel(E, [ f (t$)]). Then, since the total energy is conserved,

�*rel(t$)
�t$

=:
1

$*rel(t$)
�f1(t$)

�f1(t$)
�t$

=:
1

$*rel(t$)
$f1(t$)

I1(t$)

whence it follows that �*rel(t$)��t$ is at least of second order in the pertur-
bation, as was to be proved.

The last two terms in the expression (3.4), when substituted into
Eq. (2.6), lead to the decomposition of the collision integral

I1(t)=I L
1 (t)+I C

1 (t) (4.1)

where

I L
1 (t)=&

1
�2 |

t

t0

dt$ Tr[[U -
0(t, t$)[ f� 1 , H� $] U0(t, t$), H� $(t$)] *rel(t$)] (4.2)

I C
1 (t)=

1
�2 |

t

t0

dt$ Tr[[U -
0(t, t$)[ f� 1 , H� $] U0(t, t$)[*rel(t$), H� 0(t$)]] (4.3)

We shall see later that the term I L
1 (t) is nothing but the Levinson collision

integral. The new term, I C
1 (t), is due to many-particle correlations in the

ensemble described by the relevant statistical operator. If the one-particle
distribution function f1(t) is taken as the only state parameter, the relevant
statistical operator (2.17) does not involve the term with H� $; hence, *rel(t$)
commutes with H� 0(t$) and I C

1 (t)=0.

4.1. The Collision Contribution

We now calculate the term I L
1 (t), Eq. (4.2), in the non-Markovian

Born approximation. Since this term is explicitly of second order in the
interaction, the relevant statistical operator, Eq. (2.27), can be approximated
by

*0
rel(t)=exp {&:

1

4� 1(t) a-
1a1=<Tr exp {&:

1

4� 1(t) a-
1 a1= (4.4)
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Formally, this statistical operator describes a nonequilibrium ideal quan-
tum gas, so that the self-consistency condition for the Lagrange multipliers
4� 1(t) reads

f1(t)=Tr[a-
1a1*0

rel(t)]=
1

exp[4� 1(t)]\1
(4.5)

whence it follows that

4� 1(t)=ln \1�f1(t)
f1(t) + (4.6)

The time dependence of the operators in Eq. (4.2) can be worked out by
using the following properties of the evolution operator (3.3):

U -
0(t, t$) a1 U0(t, t$)=e&i|1(t, t$)a1 , U -

0(t, t$) a-
1 U0(t, t$)=ei|1(t, t$)a-

1 (4.7)

where

|1(t, t$)=
1
� |

t

t$
dt" E1(t")=

=1

�
(t&t$)+

1
� |

t

t$
dt" 7HF

1 (t") (4.8)

Taking into account that the statistical operator (4.4) admits Wick's
decomposition of the averages, a simple algebra gives

I L
1 (t)=&

1
�2 :

21$2$

|(12| V |1$2$) ex | 2

_|
t

t0

dt$ cos[2|12, 1$2$(t, t$)] F12, 1$2$([ f (t$)]) (4.9)

where

2|12, 1$2$(t, t$)=|1(t, t$)+|2(t, t$)&|1$(t, t$)&|2$(t, t$) (4.10)

and the functional F12, 1$2$([.]) is defined for any set of single-particle func-
tions .1 as

F12, 1$2$([.])=.1.2 .� 1$.� 2$&.� 1.� 2.1$ .2$ , .� 1=1\.1 (4.11)

In the context of Eq. (4.9), the functional F12, 1$2$([ f (t$)]) is nothing but
the gain-loss term which appears in quantum collision integrals. Expres-
sion (4.9) only differs from the original Levinson collision integral(3) in that
the quantities |k(t, t$) in Eq. (4.10) involve the exchange Hartree�Fock
term.
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4.2. The Correlation Contribution

To calculate the second-order correlation contribution to the collision
integral, Eq. (4.3), we expand the relevant statistical operator (2.27) in H� $,
keeping only the first-order terms. This gives

*rel(t)={1&;*(t) |
1

0
dx[*0

rel(t)]x (H� $(t)&(H� $) t
0)[*0

rel(t)]&x= *0
rel(t)

(4.12)

Here the symbol (H� $) t
0 stands for the average with the statistical operator

(4.4). Having the above expression, we calculate the commutator appearing
in Eq. (4.3) (for brevity the time argument t$ is omitted):

[*rel , H� 0]=&
1
2

;* :
121$2$

(1$2$| V |12)
2E12, 1$2$

24� 12, 1$2$

_[e24� 12, 1$2$&1] a-
2$a

-
1$a1 a2*0

rel (4.13)

where

2E12, 1$2$(t)=E1(t)+E1(t)&E1$(t)&E2$(t) (4.14)

24� 12, 1$2$(t)=4� 1(t)+4� 2(t)&4� 1$(t)&4� 2$(t) (4.15)

We next substitute Eq. (4.13) into Eq. (4.3) and use Wick's theorem to
calculate the average. In the final result it is convenient to eliminate
24� 12, 1$2$ . To this end, we introduce a functional

K12, 1$2$([.])=
.1.2 .� 1$.� 2$

.� 1.� 2.1$ .2$

(4.16)

Then, recalling Eq. (4.6), it can easily be verified that

24� 12, 1$2$(t)=&ln K12, 1$2$([ f (t)]) (4.17)

Omitting a simple algebra, we present the final expression for the correla-
tion term in the collision integral:

I C
1 (t)=&

1
�2 :

21$2$

|(12| V |1$2$) ex |2 |
t

t0

dt$ cos[2|12, 1$2$(t, t$)]

_
;*(t$) 2E12, 1$2$(t$)
ln K12, 1$2$([ f (t$)])

F12, 1$2$([ f (t$)]) (4.18)
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It is similar to the collision term (4.9) but contains the additional factor in
the integrand.

C. The Full Collision Integral and Its Properties

Due to the similarity in structure, the two contributions, Eqs. (4.9)
and (4.18), are conveniently combined into a single expression

I1(t)=&
1
�2 :

21$2$

|(12| V |1$2$) ex |2 |
t

t0

dt$ cos[2|12, 1$2$(t, t$)]

_{1+
;*(t$) 2E12, 1$2$(t$)
ln K12, 1$2$([ f (t$)]) = F12, 1$2$([ f (t$)]) (4.19)

which can be written in a more elegant form by using the relation

;*(t) 2E12, 1$2$(t)=&ln K12, 1$2$([F(t)]) (4.20)

where

F1(t)=
1

exp[;*(t)[E1(t)&+*(t)]]\1
(4.21)

is the one-particle distribution function in the quasi-equilibrium ensemble
[cf. Eq. (2.21)]. With Eq. (4.20), the expression (4.19) becomes

I1(t)=&
1
�2 :

21$2$

|(12| V |1$2$) ex |2 |
t

t0

dt$ cos[2|12, 1$2$(t, t$)]

_{1&
ln K12, 1$2$([F (t$)])
ln K12, 1$2$([ f (t$)])= F12, 1$2$([ f (t$)]) (4.22)

This collision integral has some remarkable properties. First, it vanishes in
the quasi-equilibrium state where f1(t)=F1(t). In this case the collision
contribution and the correlation contribution cancel each other. In par-
ticular, I1=0 in complete equilibrium since F1(t) goes over to the equi-
librium distribution function as ;*(t) � 1�T and +*(t) � +, where T and +
are the equilibrium temperature and the equilibrium chemical potential,
respectively. It should be emphasized that the collision term (4.9) alone
does not vanish in thermal equilibrium, which is the grave disadvantage of
the Levinson-type kinetic equations. Another important property of the
collision integral is its asymptotic behavior as t&t0 � �. This stage of the
evolution can be described on a large time scale, so that we may pass to
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the Markovian limit. To analyze this case, it is convenient to return to the
expression (4.19). Putting there f (t$)rf (t), F(t$)rF(t), and then perform-
ing the limit t0 � � with the regularization factor exp[&=(t&t$)], we find
that the correlation contribution vanishes due to the fact that now the
cosine term is replaced by the delta function $(2E12, 1$2$(t)��). As a result,
we get the well-known Uehling�Uhlenbeck collision integral

I1(t)=&
?
�2 :

21$2

|(12| V |1$2$) ex | 2 $ \2E12, 1$2$(t)
� + ( f1 f2 f� 1$ f� 2$& f� 1 f� 2 f1$ f2$)t

(4.23)

where we have used the definition of F12, 1$2$ , Eq. (4.11). We would like to
draw attention to the role of the correlation term in the collision integral.
Although this term goes to zero in the long-time limit, the non-Markovian
expression (4.19) is constructed such that the interplay between collisions
and correlations is precisely the reason why the Markovian regime arises.
It should be noted, however, that beyond Born approximation, for
instance, in the T-approximation for the collision integral, the correlation
term does not go to zero in the Markovian limit.(11)

4.4. A Simplified Version of the Non-Markovian Collision
Integral

Because of the presence of the K-functional, the full collision integral
(4.19) has a more complicated structure than the Levinson term (4.9).
Having in mind practical applications of the scheme developed here, it
makes sense to formulate a simplified version of the non-Markovian colli-
sion integral which, nevertheless, retains the main properties of the full
expression (4.19). Let us approximate the correlation term (4.18) by its
value in the quasi-equilibrium state described by the statistical operator
(2.21). In the case of weak interaction, this approximation means that we
put f (t$)rF(t$). Then, recalling Eq. (4.20), we obtain

I C
1 (t)=

1
�2 :

21$2$

|(12| V |1$2$) ex |2 |
t

t0

dt$ cos[2|12, 1$2$(t, t$)] F12, 1$2$([F(t$)])

(2.24)

Now the expression (4.19) takes a simpler form

I1(t)=&
1
�2 :

21$2$

|(12| V |1$2$) ex |2 |
t

t0

dt$ cos[2|12, 1$2$(t, t$)]

_[F12, 1$2$([ f (t$)])&F12, 1$2$([F(t$)])] (4.25)
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Obviously this collision integral vanishes in the quasi-equilibrium state and,
consequently, in complete equilibrium. Another important point is that, in
the Markovian limit, Eq. (4.25) reduces to the Uehling�Uhlenbeck collision
integral (4.23) since, in this limit, the contribution from F12, 1$2$([F(t$)])
vanishes, as can easily be verified with the aid of Eqs. (4.11) and (4.21).
Recently, an ``improved'' version of the Levinson collision integral was
proposed in the Green's function method on the basis of approximate solu-
tion of a Dyson equation with initial correlations.(7) It differs from Eq. (4.25)
in that the single-particle energies did not involve the Hartree�Fock correc-
tions and the correlation term was approximated by F12, 1$2$([ f (eq)]), where
f (eq)

1 is the distribution function in complete equilibrium. Physically, the
drug of choice for a simplified non-Markovian collision integral is the
expression (4.25) which involves effects of running correlations, whereas
replacing the quasi-equilibrium distribution function F1(t$) by f (eq)

1 implies
that the state of the system is close to complete equilibrium.

5. BALANCE EQUATIONS IN THE NON-MARKOVIAN REGIME

Having the explicit expression (4.19). for the collision integral, it is
of interest to analyze in more detail the balance equations derived in
Section 2.

5.1. Energy Balance. The Nonequilibrium Correlation Energy

We have already shown that the non-Markovian kinetic equation with
the collision integral (4.19) has the correct equilibrium solution. Now we
want to demonstrate that the right-hand side of Eq. (2.40) can be represented
as a time derivative, i.e., the non-Markovian kinetic equation is consistent
with the energy conservation.

First we will prove that any collision integral of the form

I1(t)=& :
21$2$

|
t

t0

dt$ cos[2|12, 1$2$(t, t$)] G12, 1$2$(t$) (5.1)

conserves the total energy, if the function G12, 1$2$(t) has the symmetry
properties

G12, 1$2$(t)=G21, 1$2$(t)=G12, 2$1$(t), G12, 1$2$(t)=&G1$2$, 12(t) (5.2)

and the function 2|12, 1$2$(t, t$) satisfies the conditions

�
�
�t

|12, 1$2$(t, t$)=2E12, 1$2$(t), 2|12, 1$2$(t, t)=0 (5.3)
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where 2E12, 1$2$(t) is given by Eq. (4.14). The proof is as follows. Multi-
plying Eq. (5.1) by E1(t) and then summing over the quantum numbers 1,
we obtain

:
1

E1(t) I1(t)=&
1
4

:
121$2$

2E12, 1$2$(t) |
t

t0

dt$ cos[2|12, 1$2$(t, t$)] G12, 1$2$(t$)

=
d
dt \&

�

4
:

121$2$
|

t

t0

dt$ sin[2|12, 1$2$(t, t$)] G12, 1$2$(t$)+ (5.4)

where use has been made of Eqs. (5.2) and (5.3). Comparison of Eqs. (2.40)
and (5.4) shows that the non-Markovian collision integral (5.1) indeed
conserves the total energy. As a byproduct of the proof, we have the following
expression for the nonequilibrium correlation energy:

Ecorr(t)=Ecorr(t0)+
�

4
:

121$2$
|

t

t0

dt$ sin[2|12, 1$2$(t, t$)] G12, 1$2$(t$) (5.5)

where Ecorr(t0) is an initial value of the correlation energy at t=t0 .
Turning now to the collision integral (4.19) and recalling the definition

of the functionals F and K, it is easy to check that the symmetry condi-
tions (5.2) are satisfied. Thus, the collision integral (4.19) conserves the
total energy. In our case Eq. (5.5) reads

Ecorr(t)=Ecorr(t0)+2E$corr(t)+2E"corr(t) (5.6)

where

2E$corr(t)=
1

4�
:

121$2$

|(12| V |1$2$) ex | 2

_|
t

t0

dt$ sin[2|12, 1$2$(t, t$)] F12, 1$2$([ f (t$)]) (5.7)

2E"corr(t)=
1

4�
:

121$2$

|(12| V |1$2$) ex | 2 |
t

t0

dt$ sin[2|12, 1$2$(t, t$)]

_
;*(t$) 2E12, 1$2$(t$)
ln K12, 1$2$([ f (t$)])

F12, 1$2$([ f (t$)]) (5.8)

We have separated the time-dependent contribution to the correlation
energy into two parts which have different physical interpretation. The
term (5.7) can be regarded as the collision contribution to the correlation
energy. An analogous term was derived previously from the Levinson
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kinetic equation(15, 16) and by the Green's function method.(7) The term
(5.8) arises due to collective (correlation) effects. In thermal equilibrium
these two terms cancel each other so that the correlation energy does not
depend on time.

It is interesting to note that the simplified non-Markovian collision
integral (4.25) has the form (5.1), where G12, 1$2$ is the difference of two
F-functionals, each of which satisfies the symmetry conditions (5.2). We
may thus conclude that the collision integral (4.25) conserves the total
energy. The approximate correlation energy is given by

2Ecorr(t)=
1

4�
:

121$2$

|(12| V |1$2$) ex |2 |
t

t0

dt$ sin[2|12, 1$2$(t, t$)]

_[F12, 1$2$([ f (t$)])&F12, 1$2$([F(t$)])] (5.9)

Exactly the same expression follows from Eq. (5.6) if the term (5.8) is
replaced by its value in the quasi-equilibrium state.

5.2. Non-Markovian Equation for the Quasi-Temperature

In general, the quasi-temperature evolves in time according to
Eq. (2.48). Within the framework of non-Markovian Born approximation,
the correlation function (H� , f� 1) in this equation can be replaced by
(H� 0(t), f� 1) since the collision integral is already of second order in the
interaction. Then a little algebra shows that Eq. (2.48) reduces to

d;*(t)
dt

=
1

C(t)
:
1

E1(t) I1(t) (5.10)

With Eq. (4.19), this is written in the expanded form as

d;*(t)
dt

=&
1

4�2C(t)
:

121$2$

2E12, 1$2$(t) |(12| V |1$2$) ex |2

_|
t

t0

dt$ cos[2|12, 1$2$(t, t$)]

_{1+
;*(t$) 2E12, 1$2$(t$)
ln K12, 1$2$([ f (t$)])= F12, 1$2$([ f (t$)]) (5.11)

The correlation function C(t) is given by Eq. (2.49) and can be calculated,
in the leading approximation, by using the statistical operator (4.4) which
admits Wick's decomposition of averages. The Lagrange multipliers 4� 1(t)
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can then be expressed in terms of the one-particle distribution function by
means of Eq. (4.6). After some algebra, one obtains

C(t)=
1
4

:
121$2$

|(12| V |1$2$) ex | 2 f� 1(t) f� 2(t) f1$(t) f2$(t)
K12, 1$2$([ f (t)])&1
ln K12, 1$2$([ f (t)])

(5.12)

whence it follows that C(t)>0. Now the kinetic equation (2.5), together
with the expression (4.19) for the collision integral and the evolution equa-
tion (5.11) for the quasi-temperature, form a closed set of equations describing
non-Markovian relaxation processes in the system.

5.2. Entropy Production in the Non-Markovian Regime

Of special physical interest is the entropy equation (2.50). To second
order in the interaction, the Lagrange multipliers *1(t) can be expressed in
terms of the one-particle distribution functions, f1(t) and F1(t), with the aid
of Eqs. (2.29), (4.6), and (4.21). Eliminating 4� 1 and ;*(E1&+*), we obtain

*1(t)=ln _ f� 1(t) F1(t)
f1(t) F� 1(t)& (5.13)

Substituting this expression, together with Eq. (4.22), into Eq. (2.50) and
then making use of the symmetry of the collision integral under permuta-
tions of the single-particle quantum numbers, the entropy production takes
the form

dS(t)
dt

=
1

4�2 :
121$2$

|(12| V |1$2$) ex |2 ln _K12, 1$2$([ f (t)])
K12, 1$2$([F (t)])&

_|
t

t0

dt$ cos[2|12, 1$2$(t, t$)]

_{1&
ln K12, 1$2$([F (t$)])
ln K12, 1$2$([ f (t$)])= F12, 1$2$([ f $(t)]) (5.14)

Although the right-hand side of his equation involves memory effects, the
entropy production is identically zero in thermal equilibrium, as it must be.
To understand the behavior of the entropy production in the Markovian
limit, we put f (t$)rf (t), F(t$)rF(t), and then pass to the limit t0 � &�
inserting the factor exp[&=(t&t$)]. As we have already noted, such a pro-
cedure leads to the appearance of the delta function $(2E12, 1$2$(t)��) in
place of the oscillating cosine term. Due to Eq. (4.20), we may then put
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K12, 1$2$([F (t)])=1. Finally, it is convenient to eliminate the F-functional
be means of the relation

F12, 1$2$([ f ])= f� 1 f� 2 f1$ f2$(K12, 1$2$([ f ])&1) (5.15)

which follows from Eqs. (4.11) and (4.16). As a result of these manipula-
tions, we find the entropy production in the Markovian limit:

dS(t)
dt

=
?

4�2 :
121$2$

|(12| V |1$2$) ex |2 $ \2E12, 1$2$(t)
� + [K12, 1$2$([ f (t)])&1]

_ln K12, 1$2$([ f (t)])( f� 1 f� 2 f1$ f2$)t (5.16)

It depends only on the one-particle distribution function and is positive,
since (x&1) ln x�0 for x>0. The result (5.16) agrees with the well-known
expression for the entropy production in a weakly interacting quantum
system described by a Markovian kinetic equation (see, e.g., ref. 17).

6. GENERALIZATION TO SPATIALLY NON-HOMOGENEOUS
SYSTEMS

Here we shall briefly touch upon the extension of the foregoing treat-
ment to spatially non-homogeneous systems. In such cases, many-particle
correlations associated with the energy conservation can be incorporated
by taking mean energy density E(r, t)=(H� (r)) t as a state variable,
together with the one-particle Wigner function f:(r, p, t)=( f� :(r, p)) t. The
energy density operator, H� (r), is defined through the relation

H� =| dr H� (r) (6.1)

and the operator corresponding to the Wigner function is given by

f� :(r, p)=| dx e&p } r���-
:(r&x�2) �:(r+x�2) (6.2)

where �:(r) and �-
:(r) are the second-quantized field operators; the Greek

indices :=(i, _) specify the type of particles (i) and the spin state (u). Now
the relevant statistical operator takes the form [cf. Eq. (2.12)]

*rel(t)=
1

Zrel(t)
exp {&| dr ;*(r, t) _H� (r)&:

i

+i*(r, t) n̂i (r)&
&:

:
|

dp
(2?�)3 *:(r, p, t) f� :(r, p)= (6.3)
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where n̂i (r)=�_ �-
:(r) �:(r) are the particle-number density operators for

the species. The local inverse quasi-temperature ;*(r, t) and the Lagrange
multipliers *:(r, p, t) are to be determined from the local equations of state

E(r, t)=Tr[H� (r) *rel(t)], f:(r, p)=Tr[ f� :(r, p) *rel(t)] (6.4)

Just as in the spatially homogeneous case, the local quasi-chemical poten-
tials +i*(r, t) in Eq. (6.3) can be eliminated by re-defining the Lagrange
multipliers *:(r, p, t). Another possible way is to define the +i*(r, t) in the
local-equilibrium state described by the statistical operator

*loc(t)=
1

Zloc(t)
exp {&| dr ;*(r, t) _H� (r)&:

i

+i*(r, t) n̂i (r)&= (6.5)

Then the quasi-chemical potentials are to be determined from the local
equations of state

ni (r, t)=Tr[n̂i (r) *loc(t)] (6.6)

where ni (r, t)=(n̂i (r)) t are the mean particle-number densities for the
species. The latter definition of the quasi-chemical potentials is typical for
the hydrodynamic description of transport processes.

In the spatially non-homogeneous case, the basic evolution equations
are the kinetic equation for the Wigner function

�
�t

f:(r, p, t)=
1
i�

([ f� :(r, p), H� ]) t (6.7)

and the local conservation law for the mean energy density

�
�t

E(r, t)=
1
i�

([H� (r), H� ]) t=&{ } (J� (r)) t (6.8)

where J� (r) is the energy flux operator. To calculate the averages appearing
in Eqs. (6.7) and (6.8), the nonequilibrium statistical operator has to be
found as a functional of the state variables. This can be done by solving
Eq. (3.2) in some approximation with the relevant statistical operator given
by Eq. (6.3). If, for instance, the interaction term in the Hamiltonian can
be regarded as a small perturbation, then Eq. (3.2) can be solved by an
iterative method which is similar to the procedure used in Section 3.
There are, however, some new features which are specific to spatially non-
homogeneous systems. First, now the average on the right-hand side of
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Eq. (6.7), when calculated with the relevant statistical operator, is not zero
and the kinetic equation for the Wigner function has the form

�
�t

f:(r, p, t)+D:(r, p, t)=I:(r, p, t) (6.9)

where

D:(r, p, t)=
i
�

([ f� :(r, p), H� ]) t
rel (6.10)

is a generalized drift term which involves the correlation contributions.(11)

The collision integrals I:(r, p, t) are determined by the integral terms in
Eq. (3.2). The second important point is that, in the spatially non-homoge-
neous case, the right-hand side of Eq. (3.2) contains terms with gradients
of the Lagrange multipliers, ;*(r, t), +i*(r, t), and *:*(r, p, t). Finally, the
collision integrals I:(r, p, t) are, in general, non-local functionals of the
Wigner function. If the state parameters vary little over the range of the
interaction potential and the mean de Broglie wavelength, which is typical
for real situations, then the non-locality effects can be incorporated by
using an expansion of averages in Eqs. (6.7) and (6.8) in powers of spatial
gradients. Within this scheme, the evolution equations derived in this paper
may be interpreted as transport equations in the local approximation,
where all the gradient terms are neglected.

7. CONCLUSIONS AND OUTLOOK

We now summarize the main implications of the above analysis. The
first point is that a non-Markovian kinetic equation conserves the total
energy and has the correct equilibrium solution only, if the collision, and
correlation effects are incorporated in a self-consistent way, for instance,
within the same approximation in the interaction between particles. We
have also seen that it is precisely the interplay between correlations and
collisions that is responsible for the long-time behavior of the non-
Markovian collision integral.

Another important feature of the outlined approach is that the kinetic
equation for the one-particle distribution function is supplemented by the
equation for the quasi-temperature, Eq. (5.10), which describes the ``slow''
evolution of the system. This representation for non-Markovian kinetics
differs from standard schemes, say the Green's function method, (18�20) where
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the goal is to derive a closed kinetic equation, so that the collision and
correlation effects have to be described in terms of single-particle quantities.
The inclusion of long-lived many-particle correlations into the Green's func-
tion formalism is a rather difficult problem and there are only first steps in
this way.(21�23) On the other hand, the Green's function technique provides
a powerful tool for calculating the collision contribution to a kinetic equa-
tion beyond the Born approximation. Thus an interesting point would be
a unification of the Green's function method and the density operator
method to develop the self-consistent non-Markovian quantum kinetic
theory involving the correlation effects and the quasiparticle damping.

It is significant that the approach outlined in this paper is non-pertur-
bative in external fields. If the external field does not directly affect interac-
tions between particles, then the nonequilibrium statistical operator will
have the form (3.4), but the evolution operator U0(t, t$) will now involve
the field effects which can be taken into account exactly (not in terms of
perturbation theory). It should also be noted that, in the presence of an
external field, the energy of the system is not conserved and the trivial
equation dE�dt=0 has therefore to be replaced by a balance equation
including the work produced by the field.
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